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R. B. Hoyle
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 9EW, United Kingdom
(Received 16 August 1993)

The stability of standing squares and alternating rolls is investigated within the framework of the
lowest-order amplitude equations describing the interaction of right-, left-, up-, and down-traveling
waves on a square lattice. It is found that a standing-square or alternating-roll pattern is subject to a sta-
tionary rectangular phase instability and an oscillatory phase instability. The rectangular mode is local-
ly equivalent to a stretching along one coordinate axis and contraction along the orthogonal axis. The
oscillatory instability is locally equivalent to the coordinate axes rotating towards or away from each
other, and leads to quasiperiodic temporal oscillations of the bifurcated state.

PACS number(s): 47.20.Ky

I. INTRODUCTION

Standing squares and alternating rolls are oscillatory
patterns with square symmetry. Both patterns are made
up of a pair of two-dimensional standing waves at right
angles to each other; for standing squares the two waves
oscillate in phase, and for alternating rolls they are 7/2
out of phase.

An oscillatory standing-rectangular planform has been
observed in electrohydrodynamic convection of nematic
liquid crystals; see, for example, Kai and Hirakawa [1],
Joets and Ribotta [2] (for a similar pattern), and Nasuno,
Sano, and Sawada [3]. Alternating rolls have been found
to occur in three-dimensional magnetoconvection
(Matthews [4], Matthews, Proctor, and Weiss [5], and
Clune and Knobloch [6]). They are also found in binary
convection; the transition from squares to rolls takes
place via an alternating-roll solution. This has been ob-
served by Moses and Steinberg [7,8] and Le Gal, Po-
cheau, and Croquette [9]. There has also been theoretical
work on this system by Miiller and Liicke [10], Pismen
[11], and Armbruster [12].

Silber and Knobloch [13] have studied the problem of a
Hopf bifurcation on a square lattice in great detail in the
nonmodulational case. This has recently been extended
to consider an anisotropic environment [14].
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where w (k) and k_ are the critical frequency and wave
number respectively, for the onset of instability, where
X,Y,T are long modulation scales in the x,y,t directions,
respectively, and where h.o.t. denotes higher-order
terms.

The general interaction of two orthogonal pairs of
traveling waves close to the onset of the pattern-forming
instability can be modeled by the following equations:
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Coullet, Fauve, and Tirapegui [15] considered the
phase instabilities of a two-dimensional standing-wave
pattern, and found a large-scale oscillatory instability
leading to a quasiperiodic regime. Pismen [16] studied
the modulational instabilities of a two-dimensional stand-
ing wave, and also found a general form for the stability
criteria of other standing-wave patterns. The phase in-
stabilities of standing squares and alternating rolls have
not yet been investigated, although Nasuno, Sano, and
Sawada [3] observed structures, which they termed phase
waves, in their experiments on electrohydrodynamic con-
vection of nematic liquid crystals. These provide beauti-
ful examples of a planform modulated on a long length
scale, and the current work was conceived as a first step
in trying to understand their structure.

Here we use phase dynamics (Pomeau and Manneville
[17] and Kuramoto [18]) to investigate the stability of
standing squares and alternating rolls to long-wavelength
modulational disturbances.

II. THE AMPLITUDE EQUATIONS

We can consider an oscillatory system with square
symmetry to consist of four modulated waves, one travel-
ing in each of the tx and *y directions. We assume that
the system can be represented by a typical physical vari-
able f(x,y,t) which may be written

'te.c.+ho.t. , (1)

[
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(5)

where higher order terms have been neglected. Here
r >0, ¢, and a are real constants, while v, u, ¥, and 7 are
complex constants. All are assumed to be O (1); howev-
er, this means that in physical dimensional units the con-
trol parameter r and the phase velocity ¢ must be very
small, since we assume that the amplitudes 4, B, C, D
and 9,,3, =0(¢), where |e| <<1, in order to justify using
amplitude equations. Phase velocities of size O(1) in
physical units correspond to the limit of large ¢ within
the framework of these amplitude equations. This scaling
is in agreement with Coullet, Fauve, and Tirapegui [15],
but not with Pismen [16], who chose ¢ to be O(1) in
physical units. No higher-order spatial derivatives are in-
cluded in the amplitude equations, since it turns out that
the leading-order phase behavior can be described fully
without them. In particular, the growth rate of zigzag-
type phase disturbances is dominated by the contribution
from the imaginary transverse diffusion, i.e., the term
ia Ayy in Eq. (2) and the corresponding terms in the oth-
er three equations.

The linear parts of the amplitude equations are
recovered, after appropriate rescalings, from the most
general isotropic expansion for the growth rate, o, of a
Fourier mode of finite wavelength undergoing a bifurca-
tion at critical wave number |k|=k,., and frequency
w.(k,), under the influence of an external parameter r:

o=r—&(|k[>—k2?+0((|k|>*—k2))
+ilw,+o,(k[*—k2)+O0(([k]*—k2)H)],  (6)

where £, and w, are real constants.

The amplitude equations should respect the sym-
metries of the system. They must be invariant under X
translation, Y translation, and time T translation, and
must also conform to the symmetries of the square lat-
tice: X reflection, Y reflection, and rotation through /2.
These symmetries determine the possible nonlinear terms.

The basic maximally symmetric solutions of Egs. (2),

(3), (4), and (5) are (a) the trivial solution,
A=B=C=D=0; (b) traveling rolls, e.g., A0,
B=C=D=0; (c) standing rolls, e.g., A4 =BFO0,
C=D=0; (d) traveling squares, e.g., A4 =C0,
B =D =0; (e) standing squares, 4 =B =C =D#0; (f) al-
ternating  rolls, e.g., A =B =iC=iD+#0; and

(g) standing cross rolls, A =B+#0,C =D7#0,| A|#|C|.

These solutions and their stability to nonmodulational
perturbations were determined by Silber and Knobloch
[13].

III. LINEAR STABILITY
OF STANDING SQUARES

In this paper we will investigate standing squares. The
full analysis also applies to alternating rolls, by means of
the transformation C—iC,D—iD (equivalent to
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X—Xx+tm7/2,¢—¢+m7/2 below) and m— —m7, which
leaves the amplitude equations unaltered.
We search for a steady solution of the form

A=Rgel@T—a%) BzRoei(QT+qX) i
(7

C:Roei(QT‘qY) , D=R0ei(ﬂT+qY) ,

where R, (1, and g are constants. This represents a per-
fect standing-square pattern at a frequency and wave
number differing slightly from the critical. From Egs.
(2)—(5), we obtain

2

RZZ r—q
O vttty ®
(v; +p;+n,+2y7;)
Q=cq—ag*—(r—q* : . 9
cq—ag —(r—gq )(Vr+.ur+"lr+27’,) 9)

We require R3 >0, so r =q? is the neutral stability curve,
where the standing-square solution bifurcates from the
trivial solution.

First we consider a perturbation of the form

A=Ry(1+R)e" M —aX+0 (10)
B=R(1+S)e! @ FaX+u) (11)
C=R,(1+U)e" T a7+ 0 (12)
D:RO(1+V)ei(ﬂT+qY+¢) , (13)

where R, S, U, V, 6, ¢, x, and ¢ are functions of the slow
time scale T only. In this case, the amplitude modes R,
S, U, and V, and the phase-locking mode (0+¢—y—¢)
have nonzero growth rate eigenvalues; they are stable
when

u,+v,+n,+2y,>0, (14)
u,+v,—39,—2y,>0, (15)
nWwv,+u,—n, =2y, )+tnv,+u,—n;,—2y,;)<0, (16)
v,—un,—n,>0. 17

In order for the trivial solution to be unstable, we also re-
quire that » > 0.

The remaining modes have zero growth rate eigenval-
ues in the spatially uniform regime. If we now allow
modulations, the perturbations R, S, U, V, 6, ¢, X, and ¢
may be functions of all the slow variables X, Y, and T.
Looking only for long-wavelength effects so that
|ayl,|0y| << 1, we may immediately slave the amplitude
and phase-locking modes to the remaining phase modes.
This leads to the following coupled phase equations:

(0—)p=AO+P+X+@)y +MO— )y +K(O—9)yy
—N(x—¢)gy + WO+ ¢+x+d)yr+hoo.t.,

(18)
(X—)r=A0+P+x+¢)y +M(X—¢) yy +K(X—¢)xx
—N(O—) gy +W(O+Y+x+d)yr+hoo.t.

(19)
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(0+y+x+¢)r=GVHO+y+x+¢)
+Z{(9_¢)XT+(X_¢)YT} +h.o.t. ,

(20)
where
F=c—2aq, 1)
A=—3(F+2q1)), (22)
B A§F+2qk3) ’ -
4R (1, +Asm;)

C=1+ak,, (24)
D:t=1_112—(2)(}"1F_2q) % % ] ,  (25)
G=%+§q%‘f—l(Fk2—2q)+akz , 26)
H=—-F—2qk,, 27)
K=ak,, (28)
M=B+C+D, , 29)
N=B+D_, 30)
= 2;2}1 31)
fi=v,—u,—n,, (33)
fr=v,tu,+n,+2v,, (34)
fi=v,tu,—n,~2y,, (35)
M= vi—p—m) (36)
M=f3 ' (vitp+m+2y,), 37
A=f3'vitp—n—2)) . (38)

We can rewrite inequalities (14)—(17) in terms of the
quantities defined above, yielding

f1>0, 39)
f.>0, (40)
f3(n,+Am;)<0, 41)
f3—279,>0. (42)

We are looking for instabilities associated with the two
spatial phases ¢*=—(0—¢)/2(k,+q) and
¢=—(x—¢)/2(k.+q), and the temporal phase

'=(0+y+x+¢) /4w, +Q).

Writing (8—)=(—$)e®THIXHIY) 4 c o etc., we
find that the growth rates o of the three eigenmodes are
given by

272
0=—2M+N—K) k’;llz —K(k2+1)+0kY)
(43)
o, =i( AH)VHk*+1%)!72
—~HG+M+HW+ AZ)(k*+1%)
K22 s
+(M+N —K)———5+8+0(k*), (44)
k241
03=—i(AH)X(k*+1})!?
—UG+M+HW+ AZ)(k*+1?)
k21?2 4
+(M+N—K)———5—8+0(k*), 45)
k2+1

where & is an O(k?) term whose form cannot be deter-
mined any more precisely without significantly increasing
the complexity of the calculations.

IV. SUPPRESSION OF THE ZIGZAG INSTABILITY

Consider a zigzag phase disturbance of the form
¢ =¢MY,T), =X, T). (46)

It can be shown that ¢* grows at a rate 0|, o= —KI?,
and ¢ grows at a rate o,|,—o=—Kk?2. If a traditional
zigzag instability were to occur, we would expect the
growth rate of a zigzag disturbance to be zero at this or-
der, since there are no spatial derivatives of higher order
than second in Egs. (2)-(5). A traditional zigzag instabil-
ity depends on the presence of third- and fourth-order
spatial derivatives in the amplitude equations, and occurs
only for patterns at wavelengths longer than critical
(g <0). In this case, the growth rates are nonzero be-
cause of the presence of the term —K(k?+I?) in o,
which comes from the imaginary part of the transverse
diffusion, i.e., the term ia Ayy in Eq. (2), and the corre-
sponding terms in Egs. (3)-(5). In addition, the pattern is
stable to zigzag-type disturbances if K =aA, >0, and un-
stable if K <0, for all wavelengths. Clearly, this is not a
traditional zigzag instability. In fact, the zigzag-type
phase disturbance turns out to be a special case of the
rectangular phase mode, described below, which also
grows at a rate 0. In other words, the effect of the imag-
inary transverse diffusion suppresses the zigzag instabili-

ty.
V. RECTANGULAR INSTABILITY

There is a bifurcation at
2AM+N—K)k**=—K(k2+1%)?, 47)

corresponding to 0;=0. In the long-wavelength limit
k,1—0, the instability has the eigenmode

(6+9+x+4)=0, 48)

kKG—P)=—1(x—¢) . (49)
In terms of the spatial phases, this can be written

k=—18 . (50)
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This mode corresponds to the rectangular Eckhaus insta-
bility of stationary squares, (see Hoyle [19]). It represents
local stretching along one coordinate axis, and contrac-
tion along the orthogonal axis. The effect of the instabili-
ty on a standing-square pattern is to produce rhombi.

The relationship between the two spatial phases can be
rewritten

PL=—¢% . (51)

It is now easy to see that a zigzag phase disturbance,
which satisfies

¢x=—¢%=0, (52)

is a special case of a rectangular disturbance.
The rectangular instability boundary is parabolic in
(r,q) space, and can be written

K(1+y??+2(M+N—K)y*=0, (53)

for k =vyl. This shows that the pattern becomes unstable
to modes with different k /I ratios at different points, as
illustrated in Fig. 1.

Considering squares at the critical wave number g =0,
and supercritical values of the bifurcation parameter
r >0, we find that if al; <0, then the pattern is unstable
to the rectangular mode for all »>0. If aA;>0 and
f3+2A;m; >0, then the pattern is stable to this mode for
all >0, but if aA;>0 and f;+2A;7; <0, then the pat-
tern is unstable to the rectangular mode for 0<r <r,,
and stable for r > r|, where

C2f2(f3+2)"177i)

= . 4
"V 4f (A (14 2aA,) 54

VI. OSCILLATORY INSTABILITY

The presence of a codimension-2 bifurcation is indicat-
ed by the forms of o, and ;. There is a stationary bifur-
cation at

H(k*+1%)=—

((G+M~+HW+ AZ)(k>+1%)/2
—(M+N—K)K2?/(k*+1%)}?,  (55)

: ? M N

sinble

FIG. 1. In the rectangular instability of standing squares, the
pattern becomes unstable to different shapes of perturbation, as
characterized by the ratio k /I, in different regions of parameter
space.
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and a Hopf bifurcation at

(GHM+HW+ AZ)Kk*+1*)?—2(M+N—K)k:?*=0,

(56)

where AH >0. The relationship between the two insta-
bilities is illustrated in Fig. 2. We shall be interested pri-
marily in the Hopf bifurcation, since this occurs for
AH=0/(1), which is the general case.

In the long-wavelength limit, the eigenmodes corre-
sponding to 0, and 05 satisfy

(O+P+xY+d)=+(H/A) Ak +12)" 12

X[k(@—P)+1(X—)], (57)
16—9)=k(x—) . (58)

Writing this shape in terms of the spatial and temporal
phases, we find that

o =iAk$", (59)
of=idld', (60)
1=k . (61)

Locally, this mode rotates the roll axes toward or away
from each other; in a standing-square planform the effect
is to create rectangles. The temporal phase is also in-
volved, and at the Hopf bifurcation this leads to a quasi-
periodic oscillation of the bifurcated state.

Note that the relationship between the two spatial
phases (61) can be rewritten ¢} =¢%. So we see that the
two-dimensional oscillatory Eckhaus instability, with
¢*=¢*(X,T) and ¢’=¢”(Y,T), is a special case of this
three-dimensional oscillatory instability.

When AH <0, one of o, and o5 is positive and the
other negative; however, when 4H >0, o, and o, are
complex and the Hopf bifurcation may occur. In the lim-
it of large ¢, where the physical dimensional phase veloci-
ties are O(1), it is easily seen that AH-—c?/2, so the
Hopf bifurcation is expected to occur.

For AH >0, the second-order real part of o, and o,
passes through zero when

(G+M+HW+ AZ)(1+y?)?—2M+N —K )y*=0,
(62)

for k=yI. Once again the pattern becomes unstable to

AR 1Y)

fiopts/),
bifureation

(G+M+HWAZ)(K'+ 1Y)
- 2{MN-KRT /(KN

\ stationary ™.,
bifureation

FIG. 2. Codimension-2 bifurcation for the phase modes of
standing squares.
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modes with different k /I at different points, as shown in
Fig. 3.

For squares at the critical wave number, ¢ =0, and
r >0, we find that the system is unstable to the oscillatory
mode if 1+a(A;+A,)<0. If 1+a(A;+A,)>0, and
f3+2Am; >0, then the pattern is stable to the oscillatory
mode. However, if 1+a(A;+A,)>0 and f;+2A;7; <O,
then we find that standing squares are unstable to the os-
cillatory mode for 0 <r <r,, and stable for r >r,, where

cfy(f3+20m;)

. 63

r

It is interesting to compare these stability criteria with
those found by Coullet, Fauve, and Tirapegui [15] for a
single standing wave. They found that the standing wave
is unstable to long-wavelength, low-frequency modula-
tions if

VoV Bl

1+a
Vi~

<0, (64)

using the notation of this paper. In the standing-square
system, this would correspond to

1+l +1,)/2<0, (65)

where we have set ¥ =1=0, so that there is no coupling
between the two orthogonal standing waves. Note that
when 7=0, the amplitude stability condition f;—27n, >0
reduces to f3 >0, and in turn the condition for instability
to the oscillatory mode reduces to

Comparing this with the condition (65), we see that the
condition for instability of standing squares to the oscilla-
tory mode is less stringent than that for instability of a
single standing wave to this long-wavelength oscillatory
mode. The difference between conditions (65) and (66) is
a result of the phase locking, (0+1y—y—¢)<<1, which
must therefore be destabilizing.

In the oscillatory phase instability of standing
squares, the pattern becomes unstable to different shapes of per-
turbation, as characterized by the ratio k /I, in different regions
of parameter space.

FIG. 3.
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VII. GEOMETRICAL INTERPRETATION
OF THE PHASE-INSTABILITY EIGENMODES

The spatial structure of the phase-instability eigen-
modes can be interpreted geometrically. We can inter-
pret the rectangular phase mode as a divergence-free dis-
turbance, and the oscillatory mode as a curl-free distur-
bance. Writing

¢X
= & (67)
we find that for the rectangular instability we have
V-¢=0, (68)
and for the oscillatory instability
VX¢=0. (69)

A simple curl-free distrubance is given by ¢ =X, where
X=(X,Y); this is a radial phase vector. Similarly, a sim-
ple divergence-free disturbance is given by ¢=2ZXX,
where Z is a unit vector in the direction orthogonal to the
XY plane; this is an azimuthal phase vector. A structure
with a spiral phase vector can be produced by combining
divergence-free and curl-free disturbances, such as the
two above.

These patterns are particularly interesting in connec-
tion with the phase waves seen by Nasuno, Sano, and
Sawada [3]. They observed long-wavelength ‘‘target”
patterns (which are concentric ellipses propagating radi-
ally outwards), and rotating spiral patterns, superimposed
upon a standing rectangular pattern. In addition to being
long wavelength with respect to the original pattern, they
also have a lower frequency of oscillation. I suggest that
these patterns might be connected with curl-free phase
disturbances (for target patterns) and a combination of
divergence-free and curl-free phase disturbances (for
spirals). Their lower frequency of oscillation would cor-
respond to the low-frequency modulation which leads to
quasiperiodic oscillations at the oscillatory instability.

VIII. DISCUSSION

A standing-square or alternating-roll pattern can arise,
in certain parameter regimes, as the stable preferred plan-
form at a Hopf bifurcation from the conductive solution.
Its subsequent evolution can be described by the ampli-
tude Egs. (2)-(5).

Standing squares and alternating rolls exhibit the same
three-dimensional rectangular Eckhaus instability as a
stationary square pattern. Locally, this mode produces
stretching along one coordinate axis, and contraction
along the other. There is a new oscillatory instability
which is locally equivalent to rotating the coordinate axes
toward or away from each other. The oscillatory insta-
bility also involves a change in the frequency of oscilla-
tion as the instability progresses; in other words, it results
in quasiperiodic oscillations. This is similar to the result
found by Coullet, Fauve, and Tirapegui [15] for the two-
dimensional case. However, the criterion for instability
of the two-dimensional standing wave is more stringent
than the criteria for instability of standing squares
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and alternating rolls to the rhombic oscillatory mode;
this is the destabilizing effect of the phase locking,
(0+y—x—¢)<<1.

The rectangular mode can be interpreted as a
divergence-free phase disturbance, and the oscillatory
mode as a curl-free disturbance. Structures with spiral
phase vectors can be formed from a combination of the
oscillatory and rectangular modes. It is possible that
these spiral structures are connected with the spiral phase
waves seen by Nasuno, Sano, and Sawada [3] in their ex-
periments on electrohydrodynamic convection of nematic
liquid crystals, and that the curl-free disturbances are
relevant to the target patterns they observe. These phase
waves are long wavelength with respect to the underlying
standing rectangular pattern, and also have a lower fre-
quency of oscillation, just like the phase disturbances de-
scribed in this paper.

The rectangular and oscillatory instability boundaries
can interact in numerous different ways, depending on

the parameter values. We have only considered in detail
the case of a pattern at the critical wave number, yet even
here the number of parameter regimes with qualitatively
different stability diagrams is very large.

We also find that the zigzag instability is suppressed by
the effect of imaginary transverse diffusion in the ampli-
tude equations, and the two-dimensional Eckhaus insta-
bility is subsumed into the three-dimensional oscillatory
instability.

Numerical simulations of the phase instabilities are
currently underway, and it is hoped to present these in a
future paper.
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FIG. 1. In the rectangular instability of standing squares, the
pattern becomes unstable to different shapes of perturbation, as
characterized by the ratio k /I, in different regions of parameter
space.
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FIG. 2. Codimension-2 bifurcation for the phase modes of
standing squares.



FIG. 3. In the oscillatory phase instability of standing
squares, the pattern becomes unstable to different shapes of per-
turbation, as characterized by the ratio k /I, in different regions
of parameter space.



